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Abstract

The George B. Moody PhysioNet Challenge 2025
focused on detecting potential cases of Chagas disease
from standard 12-lead electrocardiograms (ECGs). Our
team, Kust MeAl, proposed an approach to predict
Chagas disease by combining an 18-layer residual neural
network and a joint loss consisting of focal loss and
precision loss. Firstly, we retain all samples from the
SaMi-Trop and PTB-XL datasets and select a portion of
samples from the CODE-15% dataset as the training set.
All selected recordings then underwent the same series of
preprocessing steps including denoising, cropping and
normalization. Secondly, we built an 18-layer residual
network with multi-head self-attention to extract the
Chagas disease's complex pathological patterns from ECG
records. Thirdly, to alleviate the severe class imbalance
problem and achieve accurate detection of Chagas disease,
we perform mixup data augmentation operation on all
samples and then jointly optimize the proposed model
using focal loss and a custom precision loss. Preprocessed
12-lead ECG segments were used as model inputs for end-
to-end training, and the prediction probabilities of positive
and negative categories were produced as model outputs.
Finally, our proposed approach received the Challenge
score of 0.195 (ranked 26th out of 40 teams) on the hidden
test set.

1. Introduction

Chagas disease is a tropical parasitic disease caused by
Trypanosoma cruzi and is transmitted mainly by triatomine
bugs, also known as “kissing bugs”. It affects an estimated
6.5 million people in endemic countries, and causes nearly
10,000 deaths annually [1]. Serological testing is effective
for diagnosing individual patients, but its limited capacity
makes  large-scale  screening  impractical.  The
electrocardiogram (ECG) provides a low-cost, non-
invasive  alternative, as symptoms of Chagas
cardiomyopathy are often visible on it, offering a valuable
opportunity to prioritize high-risk individuals for
confirmatory testing by pre-screening large populations
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[2].
George B. Moody PhysioNet Challenge 2025 Invites
teams to develop approaches that leverage ECGs to
prioritize patients for confirmatory testing for Chagas
disease, advancing scalable screening and more efficient
allocation of limited diagnostic resources [3-5]. However,
creating an effective algorithm is non-trivial, primarily due
to the substantial data-centric hurdles of severe class
imbalance from the disease's low prevalence and
significant label noise from large, weakly-labeled data
sources. These challenges can mislead standard models,
suppressing their ability to detect the rare positive cases
that matter most.

In this work, we present a tailored deep learning
approach based on a residual network with multi-head self-
attention, which achieves robustness against difficult data
conditions through a joint loss function that mitigates noisy
labels and handles class imbalance.

2. Methods

2.1. Datasets and Preprocessing

The Challenge train data were compiled from three
sources, including Central and South American datasets
(CODE-15% and SaMi-Trop), the PTB-XL dataset, and
several private datasets from Chagas-endemic regions [6-
8]. The Challenge data comprise of the public training set,
the hidden validation set and the hidden test set. The data
contains standard 12-lead ECG recordings, basic
demographic variables, and binary labels denoting Chagas
disease status [3]. The public training set includes more
than 323,000 recordings drawn from three sources CODE-
15% dataset with weak labels, SaMi-Trop dataset, and
PTB-XL dataset, where the latter two datasets have strong
labels that have been manually verified.

We counted 8,190 Chagas-positive and 357,995
negative cases in the public training set (366,185 total).
The positive prevalence is only 2.24% (1:43.7), indicating
that there is a serious long-tail class imbalance problem in
the public training set. Considering that the CODE-15%
dataset is too large and too many negative samples may
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mislead model training, we randomly sampled 6,000
positive and 6,000 negative records from CODE-15%. We
retained all samples from the other two databases, PTB-XL
dataset and SaMi-Trop dataset. We apply the following
data pre-processing procedures for all ECG recordings.
Firstly, we resample all selected ECGs to 100 Hz, and then
apply a 3rd-order Butterworth band-pass filter (0.5-45 Hz)
for per lead to suppress baseline and electromyography
(EMG) artifact. Secondly, the sliding average filter with a
window of N=Fs/50 samples is used to suppress the power
frequency noise contained in the ECGs. From each
recording, the first 10 seconds segment were retained, and
segment shorter than 10 seconds is zero-padded to 1,000
samples to ensure uniform length. The 12 leads are stacked
to form a (12, 1000) array. Thirdly, each record is z-score
standardized over all leads and time points within the
record, with any NaN/Inf values replaced by 0.01.

2.2. Model Architecture

Deep residual networks [9] introduce skip connections
that allow gradients and information to propagate more
directly through very deep networks, thereby improving
feature learning efficiency. Their effectiveness has been
extensively studied and validated [10]. An 18-layer
residual network was used in our approach. The overall
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structure of the model is shown in Figure 1. Preprocessed
ECG signals were fed into the network after the mixup data
augmentation operation. The input shape of main network
was 12*1000, the input data was first fed into a 1D
convolution with a (1, 15) kernel and a stride of 2. 8
residual blocks were stacked to form the backbone of
network. We use a single multi-head self-attention (MHA)
layer to perform dynamic feature aggregation in the full
temporal domain and model inter-lead relationships [11].
The MHA is based on dot-product attention is given in Eq.
l:

T
Attention(Q,K,V) = softmax <\/d—> %4 @)

K
MultiHead(Q,K,V) = Concat(head,, ... head,)W°
(2)

where head; = Attention(QW,%, KWK, VW) (3)
Where the projections are parameter matrices mQ €
R%modet* dk’VVL,K € R%modet> dk,]/ViV € R%modet* dk’WO €
R&* dmodet .

In this work, we use self-attention (Q = K =V = X).
We reshape features to X € RLXdmodet | d, . =12 X
32=384. And we employ h = 8 parallel attention heads.

For each head, we use dk:d,,—dm—zd“ =48,

After GAP, the 384-dimensional features is passed to a
single classification head. The classification head converts
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(b) Residual block architecture

(c) Multi-Head Self-Attention architecture

(d) Model architecture

Figure 1. The architecture diagram of our proposed approach. (a) Input data for the modified residual neural network.
(b) Residual block architecture. (c) Multi-Head Self-Attention architecture. (d) The model architecture of modified

residual neural network.
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the 384-dimensional feature vector to 2 (number of

categories) by using linear operations with dropout rate 0.2.

And it is directly converted into category probability
through Softmax in the forward propagation. Finally, the
probability distribution output by the classification head is
passed to the focal loss function (to alleviate category
imbalance and strengthen the learning of difficult-to-
classify samples) and the precision loss function (to
increase the probability of positive samples being
predicted as positive), and the above two loss functions are
added together as the total loss of the proposed model.

To improve the generalization ability and robustness of
our proposed model, Mixup is adopted in our approach to
construct more patterns of samples to expand sample
diversity. Mixup trains on virtual examples constructed as
the linear interpolation of two random examples from the
training set and their labels [12]. Assuming that (x;, y;)
and (x;, y;) are two examples drawn at random from our
training data in one batch, the mixup samples (%, ¥) are
created as defined in Eq. (4) and Eq. (5).

X =wx; + (1 - w)x; (4)

=y +(1—w)y; (5)
Where mixing coefficient w € [0, ¢] is sampled from a
Beta (¢, @) distribution, with the ¢ set to 0.1. The
model is trained using the generated mixup samples

(%, 9).
2.3. Loss Function

We combine focal loss with precision loss for model

training. The total loss formulation is given in Eq. 6.

L=0L+21%*1, (6)
Where the A4 denotes a hyper parameter for balancing the
two loss functions. In this work, A = 1.

Focal Loss: In the subset actually loaded for training,
we used 27,799 negatives and 7,631 positives (35,430
total). Among them, 6,000 negatives and 6,000 positives
were appended from CODE-15%, which provides weak
labels with severe label noise. Although adding weakly
labeled sample from CODE-15% alleviated class
imbalance, training remains dominated by easy negatives.
This loss imbalance suppresses gradients from hard/rare
positives, limiting recall and AUPRC.

Therefore, we adopt the focal loss to handle this
problem by down-weighting easy examples and
emphasizing hard examples [13]. It is defined in Eq. (7).

L =—a,(1—p)" *log(pe) (7)
Where p, denotes the model’s corresponding prediction
probability for the true label y,. The weighting factor «
and the tunable focusing parameter y are set to 0.25 and
4, respectively, during training to more strongly down-
weight easy examples, while y is set to 2 for validation,
with a keptat 0.25. The total average is considered as the
final loss.

Precision Loss: In Chagas screening, confirmatory

serology is scarce excessive false positives (FP) would
overload limited testing capacity, misallocate care, and
increase patient anxiety. To explicitly curb such errors, we
introduce a batch-level precision penalty (Eq. 8)

l, =1 — Precision (8)
Precision — TP ©)
recision = -0

Where TP denotes the number of patients with true good
labels who are predicted as good. Where FP denotes the
number of patients with true poor labels who are predicted
as good.

As above, we combine this precision loss with focal loss.
The focal component maintains high sensitivity to likely
Chagas cases, while the precision term prevents over-
triage of healthy patients, yielding a balanced objective
suited to resource-constrained screening.

2.4. Model Training

Each model is trained 50 epochs with a batch size of 64
using a NVIDIA GeForce RTX 5090. Adam with an initial
learning rate of 0.0005 was applied for model optimization.
We used a custom dynamic learning-rate schedule.
Starting at 0.0005, the learning rate was updated at the end
of every epoch according to a predefined decay table to
encourage stable convergence and improve generalization.
Model training is stopped when the model's score on the
validation set does not improve after 13 epochs.

The category decision threshold is set to 0.5 for
classification task, respectively. Other hyper-parameter of
the network (convolution kernel size, dropout rate, number
of convolution layer, etc.) were adjusted according to the
model 5-fold cross validation performance on the public
training dataset to achieve optimal performance.

3. Results

We evaluated our proposed algorithms through 5-fold
cross-validation on the public training set with the
Challenge evaluation metric. The Challenge scores on both
the public training set, hidden validation set, and hidden
test set that our final selected entry obtained were shown
in Table 1.

Training Validation | Test
0.216+0.003 0.201 0.195

Ranking
26/40

Table 1. Official Challenge scores for our final selected
entry (team Kust MeAl), including the ranking of our
team on the hidden test set. We used 5-fold cross validation
on the public training set, repeated scoring on the hidden
validation set, and one-time scoring on the hidden test set.

4. Discussion and Conclusions

Although our model achieved strong performance when
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trained on the PTB-XL and SaMi-Trop datasets with
reliable labels, the performance substantially deteriorated
after incorporating 6,000 negative and 6,000 positive
samples from the CODE-15% dataset. We consider that the
weak labels of CODE-15% introduced significant label
noise during training. Although we attempted label
cleaning to mitigate this issue, the improvements were
negligible. In addition, the distributional differences
between CODE-15% and the strongly labeled datasets
(PTB-XL and SaMi-Trop) may also have contributed to
the poor performance of our model.

A broader comparison to other Challenge entries
contextualizes our results. In contrast to our end-to-end
trained residual network, the winning team (Biomed-
Cardio) used a Vision Transformer pre-trained on over
400,000 ECGs for superior generalization [14].
Furthermore, while we used a custom joint loss function to
mitigate data challenges, other leading teams implemented
more explicit noise-handling strategies. The second-place
team (DlaskalLabMUI) employed self-supervised pre-
training with noise-robust fine-tuning [15], while the third-
place team (AIChagas) used a soft-labeling strategy to
manage uncertainty in self-reported labels and a combined
loss of binary cross-entropy (BCE) and margin ranking
loss to mitigate overfitting on potential outliers [16]. This
indicates that the key to excelling in challenging tasks lies
in data-centric solutions that are custom-tailored to address
specific problems.

In this paper, we proposed a novel approach to detect
potential cases of Chagas disease from standard 12-lead
ECGs by combining an 18-layer residual neural network
with multi-head self-attention and a composite loss that
couples focal loss with precision loss, trained end-to-end
with mixup to handle severe class imbalance and curb false
positives. Finally, our model received Challenge score of
0.195 (ranked 26th out of 40 teams) on the hidden test set.
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