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Abstract 

The George B. Moody PhysioNet Challenge 2025 
focused on detecting potential cases of Chagas disease 
from standard 12-lead electrocardiograms (ECGs). Our 
team, Kust_MeAI, proposed an approach to predict 
Chagas disease by combining an 18-layer residual neural 
network and a joint loss consisting of focal loss and 
precision loss. Firstly, we retain all samples from the 
SaMi-Trop and PTB-XL datasets and select a portion of 
samples from the CODE-15% dataset as the training set. 
All selected recordings then underwent the same series of 
preprocessing steps including denoising, cropping and 
normalization. Secondly, we built an 18-layer residual 
network with multi-head self-attention to extract the 
Chagas disease's complex pathological patterns from ECG 
records. Thirdly, to alleviate the severe class imbalance 
problem and achieve accurate detection of Chagas disease, 
we perform mixup data augmentation operation on all 
samples and then jointly optimize the proposed model 
using focal loss and a custom precision loss. Preprocessed 
12-lead ECG segments were used as model inputs for end-
to-end training, and the prediction probabilities of positive 
and negative categories were produced as model outputs. 
Finally, our proposed approach received the Challenge 
score of 0.195 (ranked 26th out of 40 teams) on the hidden 
test set. 
 
1. Introduction 

Chagas disease is a tropical parasitic disease caused by 
Trypanosoma cruzi and is transmitted mainly by triatomine 
bugs, also known as “kissing bugs”. It affects an estimated 
6.5 million people in endemic countries, and causes nearly 
10,000 deaths annually [1]. Serological testing is effective 
for diagnosing individual patients, but its limited capacity 
makes large-scale screening impractical. The 
electrocardiogram (ECG) provides a low-cost, non-
invasive alternative, as symptoms of Chagas 
cardiomyopathy are often visible on it, offering a valuable 
opportunity to prioritize high-risk individuals for 
confirmatory testing by pre-screening large populations 

[2]. 
George B. Moody PhysioNet Challenge 2025 Invites 

teams to develop approaches that leverage ECGs to 
prioritize patients for confirmatory testing for Chagas 
disease, advancing scalable screening and more efficient 
allocation of limited diagnostic resources [3-5]. However, 
creating an effective algorithm is non-trivial, primarily due 
to the substantial data-centric hurdles of severe class 
imbalance from the disease's low prevalence and 
significant label noise from large, weakly-labeled data 
sources. These challenges can mislead standard models, 
suppressing their ability to detect the rare positive cases 
that matter most. 

In this work, we present a tailored deep learning 
approach based on a residual network with multi-head self-
attention, which achieves robustness against difficult data 
conditions through a joint loss function that mitigates noisy 
labels and handles class imbalance. 
 
2. Methods 

2.1. Datasets and Preprocessing 

The Challenge train data were compiled from three 
sources, including Central and South American datasets 
(CODE-15% and SaMi-Trop), the PTB-XL dataset, and 
several private datasets from Chagas-endemic regions [6-
8]. The Challenge data comprise of the public training set, 
the hidden validation set and the hidden test set. The data 
contains standard 12-lead ECG recordings, basic 
demographic variables, and binary labels denoting Chagas 
disease status [3]. The public training set includes more 
than 323,000 recordings drawn from three sources CODE-
15% dataset with weak labels, SaMi-Trop dataset, and 
PTB-XL dataset, where the latter two datasets have strong 
labels that have been manually verified. 

We counted 8,190 Chagas-positive and 357,995 
negative cases in the public training set (366,185 total). 
The positive prevalence is only 2.24% (1:43.7), indicating 
that there is a serious long-tail class imbalance problem in 
the public training set. Considering that the CODE-15% 
dataset is too large and too many negative samples may 
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mislead model training, we randomly sampled 6,000 
positive and 6,000 negative records from CODE-15%. We 
retained all samples from the other two databases, PTB-XL 
dataset and SaMi-Trop dataset. We apply the following 
data pre-processing procedures for all ECG recordings. 
Firstly, we resample all selected ECGs to 100 Hz, and then 
apply a 3rd-order Butterworth band-pass filter (0.5-45 Hz) 
for per lead to suppress baseline and electromyography 
(EMG) artifact. Secondly, the sliding average filter with a 
window of N=Fs/50 samples is used to suppress the power 
frequency noise contained in the ECGs. From each 
recording, the first 10 seconds segment were retained, and 
segment shorter than 10 seconds is zero-padded to 1,000 
samples to ensure uniform length. The 12 leads are stacked 
to form a (12, 1000) array. Thirdly, each record is z-score 
standardized over all leads and time points within the 
record, with any NaN/Inf values replaced by 0.01. 
 
2.2. Model Architecture 

Deep residual networks [9] introduce skip connections 
that allow gradients and information to propagate more 
directly through very deep networks, thereby improving 
feature learning efficiency. Their effectiveness has been 
extensively studied and validated [10]. An 18-layer 
residual network was used in our approach. The overall 

structure of the model is shown in Figure 1. Preprocessed 
ECG signals were fed into the network after the mixup data 
augmentation operation. The input shape of main network 
was 12*1000, the input data was first fed into a 1D 
convolution with a (1, 15) kernel and a stride of 2. 8 
residual blocks were stacked to form the backbone of 
network. We use a single multi-head self-attention (MHA) 
layer to perform dynamic feature aggregation in the full 
temporal domain and model inter-lead relationships [11]. 
The MHA is based on dot-product attention is given in Eq. 
1: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 3
𝑄𝐾!

4𝑑"
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Where the projections are parameter matrices 𝑊&
' ∈

ℝ*!"#$%×	*& ,𝑊&
( ∈ ℝ*!"#$%×	*& ,𝑊&
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In this work, we use self-attention (𝑄 = 𝐾 = 𝑉 = 𝑋). 
We reshape features to 𝑋 ∈ ℝ.×*!"#$% , 𝑑/%*01 =12×
32=384. And we employ ℎ = 8 parallel attention heads. 
For each head, we use 𝑑"=𝑑2=*!"#$%

$
= 48. 

After GAP, the 384-dimensional features is passed to a 
single classification head. The classification head converts 

 
Figure 1. The architecture diagram of our proposed approach. (a) Input data for the modified residual neural network. 
(b) Residual block architecture. (c) Multi-Head Self-Attention architecture. (d) The model architecture of modified 
residual neural network. 
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the 384-dimensional feature vector to 2 (number of 
categories) by using linear operations with dropout rate 0.2. 
And it is directly converted into category probability 
through Softmax in the forward propagation. Finally, the 
probability distribution output by the classification head is 
passed to the focal loss function (to alleviate category 
imbalance and strengthen the learning of difficult-to-
classify samples) and the precision loss function (to 
increase the probability of positive samples being 
predicted as positive), and the above two loss functions are 
added together as the total loss of the proposed model. 

To improve the generalization ability and robustness of 
our proposed model, Mixup is adopted in our approach to 
construct more patterns of samples to expand sample 
diversity. Mixup trains on virtual examples constructed as 
the linear interpolation of two random examples from the 
training set and their labels [12]. Assuming that (𝑥&, 𝑦&) 
and (𝑥3, 𝑦3) are two examples drawn at random from our 
training data in one batch, the mixup samples (𝑥L,	𝑦L) are 
created as defined in Eq. (4) and Eq. (5). 

𝑥L = 𝜔𝑥& + (1 − 𝜔)𝑥3 (4) 
𝑦L = 𝜔𝑦& + (1 − 𝜔)𝑦3 (5) 

Where mixing coefficient 𝜔 ∈ [0, 𝜑] is sampled from a 
Beta (𝜑, 𝜑) distribution, with the 𝜑 set to 0.1. The 
model is trained using the generated mixup samples 
(𝑥L,	𝑦L). 
 
2.3. Loss Function 

We combine focal loss with precision loss for model 
training. The total loss formulation is given in Eq. 6. 

𝐿 = 𝑙# + 𝜆 ∗ 𝑙4 (6) 
Where the 𝜆 denotes a hyper parameter for balancing the 
two loss functions. In this work, 𝜆 = 1. 

Focal Loss: In the subset actually loaded for training, 
we used 27,799 negatives and 7,631 positives (35,430 
total). Among them, 6,000 negatives and 6,000 positives 
were appended from CODE-15%, which provides weak 
labels with severe label noise. Although adding weakly 
labeled sample from CODE-15% alleviated class 
imbalance, training remains dominated by easy negatives. 
This loss imbalance suppresses gradients from hard/rare 
positives, limiting recall and AUPRC. 

Therefore, we adopt the focal loss to handle this 
problem by down-weighting easy examples and 
emphasizing hard examples [13]. It is defined in Eq. (7). 

𝑙# = −𝛼5(1 − 𝑝5)6 ∗ 𝑙𝑜𝑔(𝑝5) (7) 
Where 𝑝5  denotes the model’s corresponding prediction 
probability for the true label 𝑦5. The weighting factor 𝛼 
and the tunable focusing parameter 𝛾 are set to 0.25 and 
4, respectively, during training to more strongly down-
weight easy examples, while 𝛾 is set to 2 for validation, 
with 𝛼 kept at 0.25. The total average is considered as the 
final loss. 
  Precision Loss: In Chagas screening, confirmatory 

serology is scarce excessive false positives (FP) would 
overload limited testing capacity, misallocate care, and 
increase patient anxiety. To explicitly curb such errors, we 
introduce a batch-level precision penalty (Eq. 8) 

𝑙4 = 1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9) 

Where TP denotes the number of patients with true good 
labels who are predicted as good. Where FP denotes the 
number of patients with true poor labels who are predicted 
as good. 

As above, we combine this precision loss with focal loss. 
The focal component maintains high sensitivity to likely 
Chagas cases, while the precision term prevents over-
triage of healthy patients, yielding a balanced objective 
suited to resource-constrained screening. 
 
2.4. Model Training 

Each model is trained 50 epochs with a batch size of 64 
using a NVIDIA GeForce RTX 5090. Adam with an initial 
learning rate of 0.0005 was applied for model optimization. 
We used a custom dynamic learning-rate schedule. 
Starting at 0.0005, the learning rate was updated at the end 
of every epoch according to a predefined decay table to 
encourage stable convergence and improve generalization. 
Model training is stopped when the model's score on the 
validation set does not improve after 13 epochs. 

The category decision threshold is set to 0.5 for 
classification task, respectively. Other hyper-parameter of 
the network (convolution kernel size, dropout rate, number 
of convolution layer, etc.) were adjusted according to the 
model 5-fold cross validation performance on the public 
training dataset to achieve optimal performance. 

 
3. Results 

We evaluated our proposed algorithms through 5-fold 
cross-validation on the public training set with the 
Challenge evaluation metric. The Challenge scores on both 
the public training set, hidden validation set, and hidden 
test set that our final selected entry obtained were shown 
in Table 1. 

Training Validation Test Ranking 
0.216±0.003 0.201 0.195 26/40 

Table 1. Official Challenge scores for our final selected 
entry (team Kust_MeAI), including the ranking of our 
team on the hidden test set. We used 5-fold cross validation 
on the public training set, repeated scoring on the hidden 
validation set, and one-time scoring on the hidden test set. 

 
4. Discussion and Conclusions 

Although our model achieved strong performance when 
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trained on the PTB-XL and SaMi-Trop datasets with 
reliable labels, the performance substantially deteriorated 
after incorporating 6,000 negative and 6,000 positive 
samples from the CODE-15% dataset. We consider that the 
weak labels of CODE-15% introduced significant label 
noise during training. Although we attempted label 
cleaning to mitigate this issue, the improvements were 
negligible. In addition, the distributional differences 
between CODE-15% and the strongly labeled datasets 
(PTB-XL and SaMi-Trop) may also have contributed to 
the poor performance of our model. 

A broader comparison to other Challenge entries 
contextualizes our results. In contrast to our end-to-end 
trained residual network, the winning team (Biomed-
Cardio) used a Vision Transformer pre-trained on over 
400,000 ECGs for superior generalization [14]. 
Furthermore, while we used a custom joint loss function to 
mitigate data challenges, other leading teams implemented 
more explicit noise-handling strategies. The second-place 
team (DlaskaLabMUI) employed self-supervised pre-
training with noise-robust fine-tuning [15], while the third-
place team (AIChagas) used a soft-labeling strategy to 
manage uncertainty in self-reported labels and a combined 
loss of binary cross-entropy (BCE) and margin ranking 
loss to mitigate overfitting on potential outliers [16]. This 
indicates that the key to excelling in challenging tasks lies 
in data-centric solutions that are custom-tailored to address 
specific problems. 

In this paper, we proposed a novel approach to detect 
potential cases of Chagas disease from standard 12-lead 
ECGs by combining an 18-layer residual neural network 
with multi-head self-attention and a composite loss that 
couples focal loss with precision loss, trained end-to-end 
with mixup to handle severe class imbalance and curb false 
positives. Finally, our model received Challenge score of 
0.195 (ranked 26th out of 40 teams) on the hidden test set. 
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